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When a radio source has an angular size that is comparable to the beam size of a radio telescope, some
of its radiation arrives offset from the main axis of the beam. As the gain of the beam decreases with this
offset, this will lead to an underestimation of the brightness of the radio source. The beam fill factor is
the correction that should be applied to get the actual source brightness. This paper discusses a possible
mathematical determination of this factor, and compares it to two known approximations.

In oder to determine the beam fill factor, we will have to introduce a number of simplifications. Firstly,
we are looking at a circular object placed in a circular beam. We will also assume those two are aligned
perfectly, and the beam has a Gaussian beam profile (this tends to hold true for at least horn and dish
antennas, and probably others). The last assumption is that the source is radiating evenly, that is it has a
constant surface brightness.

We define a function f(r) which denotes how the sensitivity of our beam depends on the angular offset
of the main beam. Let’s first see what happens if f(r) is always equal to 1, that is, we are using a truly
omnidirectional antenna. In that case, we see all of the energy from our circular source:

Sv =
∫ ρ

0

∫ 2π

0

rBf(r)dφdr

Here Sv is the received signal power per unit bandwidth in the antenna, ρ is the half angle the source
subtends and B is the (constant) surface brightness. This essentially calculates the area of the source,
with a weighting factor that depends on the beam offset. For an evenly radiating source this is directly
proportional to the received energy.

As everything is circularly symmetric, this immediately reduces to:

Sv = 2πB

∫ ρ

0

rf(r)dr

For the omnidirectional case, or at least when the beam width is much larger than the source, f(r) = 1
and the integral simply becomes Bπρ2 - this is equivalent to having a beam correction factor of 1.

For horn antennas and dishes, the main beam is often Gaussian shaped. A normalized (unity gain)
antenna pattern can then be written as

f(r) = e−ar2

Here r is the angular offset from the main beam. The value a determines how wide or narrow the beam
is, and can be calculated for a given beam width (FWHM). Half this beam width is r0.5 in the formulas
below.

e−ar2
0.5 =

1
2
⇔ −ar2

0.5 = ln(
1
2
)⇔ a = −

ln( 1
2 )

r2
0.5

For our 25m dish, the 3dB points are 0.64 degrees apart. So f(−0.32) = f(0.32) = 1
2 and then

a = 0.693/0.1024 = 6.77. This matches our actual main beam pattern as measured very well. The graph
below shows drift-scans of three different sources, converted to angular offset. The graph of f(r) = e−ar2

is superimposed with + marks.
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Next we define a value β which is Ws/Wa. And from the geometry it immediately follows that
β = Ws/Wa = ρ/r0.5. Integrating the beam function over the surface of the source now becomes:

Sv = 2πB

∫ ρ

0

rf(r)dr = 2πB

∫ ρ

0

re−ar2
dr = 2πB

∫ ρ

0

re
ln( 1

2 )β2

ρ2 r2

dr =
πBρ2

β2 ln( 1
2 )

(
eln( 1

2 )β2
− 1

)
The beam fill factor L is the ratio of the value for β = 0 to the amount of energy that is received for the

actual value of β:

L = Bπρ2/Sv = Bπρ2/

(
Bπρ2

β2 ln( 1
2 )

(
eln( 1

2 )β2
− 1

))

L =
β2 ln( 1

2 )(
eβ2 ln( 1

2 ) − 1
)

Although not immediately obvious, this function does have the property that L = 1 for β = 0, because
limx→0

ex−1
x = 1.

We can now compare the behavior of this function to two other approximations of the beam fill factor.
First, there is the one used by Doug McArthur VK3UM, which is:

LD =
√

1 + 1.19β2 − 0.57β3 + 0.45β4

Then there is the one used by Richard Flagg AH6NM, which is:

LR = 1 + 0.38β2

The image below shows all three graphs plotted, once on a linear scale and then on a relative logarithmic
scale.

2



For small values of β the simpler formula for LR conforms better to the derived formula. For larger
values, LD still stays within 0.2dB whereas the other formula veers off more and more. Of course, this still
leaves open the question which of the three formulas gives the best approximation for L: for now, we have
no information how the two approximations were derived and whether they include any factors that are not
part of the mathematical derivation above for L.
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